

## ecology and environment, inc.

108 SOUTH WASHINGTON, SUITE 302, SEATTLE, WASHINGTON 98104, TEL. 206-624-9537

International Specialists in the Environmental Sciences

## MEMORANDUM

DATE:

July 16, 1985

TO:

John Osborn, FIT RPO, USEPA, Region X

FROM:

Paul Bulson, E&E, Seattle

THRU:

Dave Buecker, FIT RPM, E&E, Seattle

SUBJ:

Mastercraft Metal Finishing

HRS Score

REF:

TDD R10-8502-17

CC:

Jim Pankanin, USEPA, Region X

A HRS scoring of Mastercraft Metal Finishing resulted in a score of Sm=5.63. The low score is a result of lack of targets via surface and ground water and since neither have possible future use, the score is expected to remain the same. If Mastercraft's hazardous waste was properly stored, the containment score (#3) for  $S_{\text{SW}}$  and  $S_{\text{QW}}$  would be zero, thus Sm would equal zero. The score for Direct Contact = 41.67.

PB:jkb



| Facility name: Mastercraft Metal Finishing                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: Seattle, WA                                                                                                                                                                                                     |
| EPA Region:                                                                                                                                                                                                               |
| Person(s) in charge of the facility: Mike Kartes                                                                                                                                                                          |
|                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                           |
| Name of Reviewer:  General description of the facility:  Date: 5/10/86                                                                                                                                                    |
| (For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.) |
| Small Electroplating operation located                                                                                                                                                                                    |
| near Lake Union. Uses a variety of                                                                                                                                                                                        |
| heavy metals, solvents and acids.                                                                                                                                                                                         |
| Could Possible contaminate Lake Union                                                                                                                                                                                     |
| Which has recreation uses, but this is                                                                                                                                                                                    |
| doubtful. If the waste were properly                                                                                                                                                                                      |
| contained the site would have a Sm=0.                                                                                                                                                                                     |
| Scores: $S_M = 5$ ( $S_{gw} = 6$ $S_{sw} = 944$ $S_a = 6$ )                                                                                                                                                               |
| S <sub>FE</sub> =                                                                                                                                                                                                         |
|                                                                                                                                                                                                                           |

FIGURE 1 HRS COVER SHEET

|          |     |                                                                      |          | Ground Water Route Work Sheet                                          |                 |       |               |                   |
|----------|-----|----------------------------------------------------------------------|----------|------------------------------------------------------------------------|-----------------|-------|---------------|-------------------|
|          |     | Rating Factor                                                        |          | Assigned Value<br>(Circle One)                                         | Multi-<br>plier | Score | Max.<br>Score | Ref.<br>(Section) |
|          | 1   | Observed Release                                                     |          | 0 45                                                                   | 1               | 0     | 45            | 3.1               |
|          | *** |                                                                      |          | n a score of 45, proceed to line 4. n a score of 0, proceed to line 2. |                 |       |               |                   |
|          | 2   | Route Characterist Depth*to Aquifer Concern                          |          | 0 1 2 3                                                                | 2               | 6     | 6             | 3.2               |
|          |     | Net Precipitation<br>Permeability of to<br>Unsaturated Zoo           | he       | 0 1 2 3                                                                | 1               | 0 m   | 3             |                   |
|          |     | Physical State                                                       |          | 0 1 2 3                                                                | 1               | 3     | 3             |                   |
|          | 9,  |                                                                      |          | Total Route Characteristics Score                                      |                 | 12    | 15            |                   |
| uled but | 3   | Containment                                                          |          | 0 1 2 3                                                                | 1               | 1     | 3             | 3.3               |
|          | 4   | Waste Characteris<br>Toxicity/Persiste<br>Hazardous Wast<br>Quantity | ence     | 0 3 6 9 12 15 18<br>0 1 2 3 4 5 6 7 8                                  | 1 1             | 18    | 18 8          | 3.4               |
|          |     |                                                                      |          | Total Waste Characteristics Score                                      |                 | 19    | 26            |                   |
|          | 5   | Targets Ground Water U Distance to Nea Well/Population Served        | rest     | 0 1 2 3<br>0 4 6 8 10<br>12 16 18 20<br>24 30 32 35 40                 | 3               | 0 0   | 9<br>40       | 3.5               |
|          |     |                                                                      |          | Total Targets Score                                                    |                 | 0     | 49            |                   |
|          | 6   |                                                                      |          | 1 x 4 x 5<br>2 x 3 x 4 x 5                                             |                 | 0     | 57,330        |                   |
|          | 7   | Divide line 6 b                                                      | y 57,330 | and multiply by 100                                                    | Sgw=            | 0     |               |                   |

FIGURE 2 GROUND WATER ROUTE WORK SHEET

|            |                                                                        | Surface Water Route Work Shee                                                            | t                 |       |               |                   |
|------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|-------|---------------|-------------------|
|            | Rating Factor                                                          | Assigned Value<br>(Circle One)                                                           | Multi-<br>plier   | Score | Max.<br>Score | Ref.<br>(Section) |
|            | 1 Observed Release                                                     | <b>6</b> - 45                                                                            | 1                 | 0     | 45            | 4.1               |
|            |                                                                        | e is given a value of 45, proceed to line 4. e is given a value of 0, proceed to line 2. |                   |       |               |                   |
|            | Route Characterist                                                     |                                                                                          | 1                 | >     | 3             | 4.2               |
| IMILE      | Terrain<br>1-yr. 24-hr. Rainf<br>Distance to Near                      |                                                                                          | 1 2               | 3     | 3<br>6        |                   |
| LAICE      | Water<br>Physical State                                                | 0 1 2 3                                                                                  | 1                 | 3     | 3             |                   |
| .1         | 4                                                                      | Total Route Characteristics Score                                                        |                   | 11    | 15            |                   |
|            | 3 Containment                                                          | 0 (1) 2 (3                                                                               | 1                 | 1     | 3             | 4.3               |
|            | Waste Characterist Toxicity/Persiste Hazardous Waste Quantity 5 during | once 0 3 6 9 12 15 18 0 1 2 3 4 5 6 7 8                                                  | 1                 | 18    | 18            | 4.4               |
|            | S darins                                                               | Total Waste Characteristics Score                                                        |                   | 19    | 26            |                   |
| Recrection | Targets Surface Water U Distance to a Se                               | dad.                                                                                     | 3 2               | 60    | 9             | 4.5               |
| 200 for    | Population Serve<br>to Water Intake<br>Downstream                      | d/Distance 0 4 6 8 10<br>12 16 18 20<br>24 30 32 35 40                                   | 1                 | 24    | 40            |                   |
|            |                                                                        | Total Targets Score                                                                      | c                 | 30    | 55            |                   |
|            | -                                                                      | multiply 1 x 4 x 5<br>ultiply 2 x 3 x 4 x 5                                              |                   | 6270  | 64.350        |                   |
|            | 7 Divide line 6 by                                                     | 64,350 and multiply by 100                                                               | S <sub>SW</sub> = | 9.7   | +             |                   |

FIGURE 7 SURFACE WATER ROUTE WORK SHEET

| D. C. C.                 | Assigned Value                                                                                                                                                                                                                                                            | Multi-                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                          | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ref.                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Rating Factor ·          | (Circle One)                                                                                                                                                                                                                                                              | plier                                                                                                                                                                                                                                                                                                                                                                                    | Score                                                                                                                                                                                                                                                                                                                                                                      | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Section                    |
| Observed Release         | 0 45                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.1                         |
| Date and Location:       |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| Sampling Protocol:       |                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| Waste Characteristics    |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          | y'a it                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2                         |
| Reactivity and           | 0 1 2 3                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| Toxicity                 | 0 1 2 3                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| Hazardous Waste Quantity | 0 1 2 3 4 5 6 7 8                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                          | Total Waste Characteristics Score                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| Targets                  |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.3                         |
| Population Within        | 0 9 12 15 18                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
|                          | 0 1 2 3                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| Environment              |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| Land Use                 | 0 1 2 3                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                          | Total Targets Score                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
|                          | Observed Release  Date and Location:  Sampling Protocol:  If line 1 is 0, the Sa = If line 1 is 45, then protocol:  Waste Characteristics Reactivity and Incompatibility Toxicity Hazardous Waste Quantity  Targets Population Within 4-Mile Radius Distance to Sensitive | Observed Release  Date and Location:  Sampling Protocol:  If line 1 is 0, the Sa = 0. Enter on line 5.  If line 1 is 45, then proceed to line 2.  Waste Characteristics Reactivity and 0 1 2 3 Incompatibility Toxicity 0 1 2 3 Hazardous Waste 0 1 2 3 4 5 6 7 8 Quantity  Total Waste Characteristics Score  Targets Population Within 4-Mile Radius Distance to Sensitive Environment | Observed Release 0 45 1  Date and Location:  If line 1 is 0, the Sa = 0. Enter on line 5. If line 1 is 45, then proceed to line 2.  Waste Characteristics Reactivity and 0 1 2 3 1 1 Incompatibility Toxicity 0 1 2 3 3 3 Hazardous Waste 0 1 2 3 4 5 6 7 8 1 Quantity  Total Waste Characteristics Score  Targets Population Within 4-Mile Radius 0 1 2 3 2 2 Environment | Observed Release  Observed Rel | Colore One   Diller   Score |

FIGURE 9 AIR ROUTE WORK SHEET

|                                                     |      | ,              |
|-----------------------------------------------------|------|----------------|
|                                                     | s    | S <sup>2</sup> |
| Groundwater Route Score (Sgw)                       | -    | 0.             |
| Surface Water Route Score (S <sub>SW</sub> )        | 9.74 | 94.94          |
| Air Route Score (Sa)                                | -0   | 0              |
| $s_{gw}^2 + s_{sw}^2 + s_a^2$                       |      | 94.94          |
| $\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$                |      | 9.74           |
| $\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$ |      | 5.63           |

FIGURE 10
WORKSHEET FOR COMPUTING S<sub>M</sub>

NA

|   |                                      | Fire       | and       | Ex         | plos | sior       | ı W  | ork | SI  | neet                                    |                 |       |                    |                  |
|---|--------------------------------------|------------|-----------|------------|------|------------|------|-----|-----|-----------------------------------------|-----------------|-------|--------------------|------------------|
|   | Rating Factor                        |            | Ass<br>(C | igne       |      |            |      |     |     |                                         | Multi-<br>plier | Score | Max.<br>Score      | Ref.<br>(Section |
| 1 | Containment                          |            | 1         |            |      |            | 3    |     |     | *************************************** | 1               |       | 3                  | 7.1              |
| 2 | Waste Characteristics                |            |           | , Care and |      | TOPE / COM |      |     | *** |                                         |                 |       | THE REAL PROPERTY. | 7.2              |
|   | Direct Evidence                      | 1          | )         |            | 3    |            |      |     |     |                                         | 1               |       | 3                  |                  |
|   | Ignitability                         | (          |           | -          |      |            |      |     |     |                                         | 1               |       | 3                  |                  |
|   | Reactivity                           |            | 1         |            | 3    |            |      |     |     |                                         | 1               |       | 3                  |                  |
|   | Incompatibility                      |            | 1         |            |      |            |      |     |     |                                         | 1               |       | 3                  |                  |
|   | Hazardous Waste<br>Quantity          | (          | 1         | 2          | 3    | 4          | 5    | 6   | 7   | 8                                       | 1               |       | 8                  |                  |
|   |                                      |            |           |            |      |            |      |     |     |                                         |                 |       |                    |                  |
|   | ył .                                 | Total Wa   | aste      | Cha        | arac | teri       | stic | s S | Sco | re                                      | 75              |       | 20                 |                  |
| 3 | Targets                              | 25         |           |            |      |            |      | 23  | 3   |                                         | - 5             |       |                    | 7.3              |
|   | Distance to Nearest<br>Population    | C          | 1         | 2          | 3    | 4          | 5    |     |     |                                         | 1               |       | 5                  |                  |
|   | Distance to Nearest<br>Building      | 0          | 1         | 2          | 3    |            |      |     |     |                                         | 1               |       | 3                  |                  |
|   | Distance to Sensitive<br>Environment | 0          | 1         | 2          | 3    |            |      |     |     |                                         | 1               |       | 3                  |                  |
|   | Land Use                             | 0          | 1         | 2          | 3    |            |      |     |     |                                         | 1               |       | 3                  |                  |
|   | Population Within 2-Mile Radius      | 0          | 1         | 2          | 3    | 4          | 5    |     |     |                                         | 1               |       | 5                  |                  |
|   | Buildings Within<br>2-Mile Radius    | 0          | 1         | 2          | 3    | 4          | 5    |     |     |                                         | 1               |       | 5                  |                  |
|   |                                      |            |           |            |      |            |      |     |     |                                         |                 |       |                    |                  |
|   |                                      |            |           |            |      |            |      |     |     |                                         |                 |       |                    |                  |
|   |                                      |            |           |            |      |            |      |     |     |                                         |                 |       |                    |                  |
|   |                                      |            |           |            |      |            |      |     |     |                                         |                 |       |                    |                  |
|   |                                      | T          | otal      | Tar        | gets | s Sc       | core | ,   | -   |                                         |                 | 70    | 24                 |                  |
| 1 |                                      |            |           |            |      |            |      |     |     |                                         |                 |       |                    |                  |
| 4 | Multiply 1 x 2 x 3                   | ]          |           |            |      |            |      |     |     |                                         |                 | 13.7  | 1,440              |                  |
| 5 | Divide line 4 by 1,440               | and multip | ly b      | y 10       | 00   |            |      |     |     |                                         | SFE =           |       |                    |                  |

FIGURE 11 FIRE AND EXPLOSION WORK SHEET

|           | ,                          |                            | Direc    | ct Contac             | t Work She | eet            |      |               |                   |
|-----------|----------------------------|----------------------------|----------|-----------------------|------------|----------------|------|---------------|-------------------|
| Ratin     | g Factor                   | •                          |          | signed V<br>Circle Or |            | Multi<br>plier |      | Max.<br>Score | Ref.<br>(Section) |
| 1 Obse    | rved Inciden               | t                          | 0        |                       | 45         | 1              | 0    | 45            | 8.1               |
| If line   |                            | proceed to line            | -        |                       |            |                |      |               |                   |
| 2 Acce    | ssibility                  |                            | 0        | 1 🙋 3                 |            | 1              | 2    | 3             | 8.2               |
| 3 Conta   | ainment Ac.                | <b>&gt;</b>                | 0        | 15                    |            | 1              | 15   | 15            | 8.3               |
|           | e Characteris              |                            | 0        | 1 2 3                 |            | 5              | 15   | 15            | 8.4               |
| 1-N       | ulation Within             | n a                        | 0        |                       | 4 (5)      | 4              | 20   | 20            | 8.5               |
|           | ance to a<br>tical Habitat |                            | 0        | 1 2 3                 |            | 4              | 0    | 12            |                   |
|           |                            |                            |          |                       |            |                |      |               |                   |
|           |                            |                            | Tota     | l Targets             | Score      |                | 20   | 32            |                   |
| 6 If line |                            | multiply 1<br>multiply 2 x | × 4      | × 5                   | 5          |                | 9000 | 21,600        |                   |
| 7 Divid   | e line 6                   | y 21,600 and               | multiply | by 100                |            | SDC            | 41.  | 67            |                   |

FIGURE 12 DIRECT CONTACT WORK SHEET

| Facility name: Master craft Metal Finishing                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: Seattle, WA                                                                                                                                                                                                     |
| EPA Region:                                                                                                                                                                                                               |
| Person(s) in charge of the facility: Mike Kartes                                                                                                                                                                          |
|                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                           |
| Name of Reviewer: Date: Date:                                                                                                                                                                                             |
| (For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.) |
| Small Electroplating operation located                                                                                                                                                                                    |
| near Lake Union, bece a variety of                                                                                                                                                                                        |
| heavy metals, solvents and acide.                                                                                                                                                                                         |
| Could Possible contaminate Lake Union                                                                                                                                                                                     |
| Which has recreation uses, but this is                                                                                                                                                                                    |
| doubtful. Ix the waste were properly                                                                                                                                                                                      |
| contained the site would have a Sm =0.                                                                                                                                                                                    |
| Scores: S <sub>M</sub> = 5,6(S <sub>gw</sub> - S <sub>sw</sub> = 944 S <sub>a</sub> - )                                                                                                                                   |
| S <sub>FE</sub> = -                                                                                                                                                                                                       |
| S <sub>DC</sub> = 41.67                                                                                                                                                                                                   |

|    |                                                                              | Ground Water Route Work Sheet                                                | t               |       |               |                   |
|----|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|-------|---------------|-------------------|
|    | Rating Factor                                                                | Assigned Value<br>(Circle One)                                               | Multi-<br>plier | Score | Max.<br>Score | Ref.<br>(Section) |
| 1  | Observed Release                                                             | 0 45                                                                         | 1               | 0     | 45            | 3.1               |
|    |                                                                              | iven a score of 45, proceed to line 4. iven a score of 0, proceed to line 2. |                 |       |               | ,                 |
| 2  | Route Characteristics Depth to Aquifer of Concern                            | 0 1 2 3                                                                      | 2               | 6     | 6             | 3.2               |
|    | Net Precipitation<br>Permeability of the<br>Unsaturated Zone                 | 0 1 2 3                                                                      | 1               | W C W | 3             |                   |
|    | Physical State                                                               | 0 1 2 3                                                                      | 1               | -2    | 3             |                   |
| 7. |                                                                              | Total Route Characteristics Score                                            |                 | 15    | 15            |                   |
| 3  | Containment                                                                  | 0 1 2 3                                                                      | 1               | 1     | 3             | 3.3               |
| 4  | Waste Characteristics<br>Toxicity/Persistence<br>Hazardous Waste<br>Quantity | 0 3 6 9 12 15 18<br>0 1 2 3 4 5 6 7 8                                        | 1               | 18    | 18<br>8       | 3.4               |
|    |                                                                              |                                                                              |                 |       |               |                   |
|    |                                                                              | Total Waste Characteristics Score                                            |                 | 19    | 26            |                   |
| 5  | Targets Ground Water Use Distance to Nearest Well/Population Served          | 0 1 2 3<br>0 4 6 8 10<br>12 16 18 20<br>24 30 32 35 40                       | 3               | 0 0   | 9<br>40       | 3.5               |
|    |                                                                              | Total Targets Score                                                          |                 | 0     | 49            |                   |
| 6  | If line 1 is 45, multi                                                       |                                                                              |                 | 0     | 57,330        |                   |
| 7  | Divide line 6 by 57,                                                         | 330 and multiply by 100                                                      | Sgw=            | 0     |               | ,                 |

FIGURE 2 GROUND WATER ROUTE WORK SHEET

Sealed but to berm ?

|             |                                                                  | Surface Water Route Work Shee                                                        | t                 |       |               |                   |
|-------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|-------|---------------|-------------------|
|             | Rating Factor                                                    | Assigned Value<br>(Circle One)                                                       | Multi-<br>plier   | Score | Max.<br>Score | Ref.<br>(Section) |
|             | 1 Observed Release                                               | <b>©</b> - 45                                                                        | . 1               | 0     | 45            | 4.1               |
|             |                                                                  | is given a value of 45, proceed to line 4. is given a value of 0, proceed to line 2. |                   |       |               |                   |
|             | Route Characteristic Facility, Slope and Terrain                 |                                                                                      | 1                 | 2     | 3             | 4.2               |
| I MILE      | 1-yr. 24-hr. Rainfal<br>Distance to Neare                        |                                                                                      | 1 2               | 3     | 3<br>6        |                   |
|             | Physical State                                                   | 0 1 2 3                                                                              | 1                 | 3     | 3             |                   |
|             | į.                                                               | Total Route Characteristics Score                                                    |                   | 11    | 15            |                   |
|             | 3 Containment                                                    | 0 1 2 3                                                                              | 1                 | 1     | 3             | 4.3               |
|             | Waste Characteristic Toxicity/Persister Hazardous Waste Quantity | 0 3 6 9 12 15 18<br>0 1 2 3 4 5 6 7 8                                                | 1 1               | 18    | 18<br>8       | 4.4               |
|             | 5 duns                                                           |                                                                                      |                   |       |               |                   |
|             |                                                                  | Total Waste Characteristics Score                                                    |                   | 19    | 26            |                   |
| 2 ecrection | Distance to a Sen                                                | - care is                                                                            | 3 2               | 60    | 9<br>6        | 4.5               |
| 2000 for    | Environment Population Served to Water Intake Downstream         | /Distance 0 4 6 8 10 12 16 18 20 24 30 32 35 40                                      | 1                 | 24    | 40            |                   |
|             |                                                                  | Total Targets Score                                                                  | Ç                 | 30    | 55            |                   |
|             |                                                                  | oultiply 1 x 4 x 5<br>oltiply 2 x 3 x 4 x 5                                          |                   | 6270  | 64.350        |                   |
|             | Divide line 6 by                                                 | 64,350 and multiply by 100                                                           | S <sub>SW</sub> = | 9.7   | 4             |                   |

FIGURE 7 SURFACE WATER ROUTE WORK SHEET

|   | Rating Factor ·                                 | Assigned Value                      | Multi-<br>plier | Score | Max.<br>Score | Ref.<br>(Section |
|---|-------------------------------------------------|-------------------------------------|-----------------|-------|---------------|------------------|
| 1 | Observed Release                                | 0 /45                               | 1               |       | 45            | 5.1              |
|   | Date and Location:                              | . /                                 |                 |       |               |                  |
|   | Sampling Protocol:                              |                                     |                 |       |               |                  |
|   |                                                 | 0. Enter on line 5. ceed to line 2. |                 |       |               |                  |
| 2 | Waste Characteristics Reactivity and            | 0 1 2 3                             | 1               |       | 3             | 5.2              |
|   | Incompatibility Toxicity                        | 0 1 2 3                             | 3               |       | 9             |                  |
| 2 | Hazardous Waste                                 | 0 1 2 3 4 5 6 7                     | 8 1             |       | 8             |                  |
|   | Quantity                                        |                                     |                 |       |               |                  |
| 3 | Targets                                         | Total Waste Characteristics Score   |                 |       | 20            | 5.3              |
| - | Population Within                               | 0 9 12 15 18                        | 1               |       | 30            | 5.3              |
|   |                                                 |                                     |                 |       |               |                  |
|   | 4-Mile Radius                                   | J 21 24 27 30<br>0 1 2 3            | 2               |       | 6             |                  |
|   | 4-Mile Radius Distance to Sensitive Environment | 0 1 2 3                             | 2               |       | 6             |                  |
|   | 4-Mile Radius Distance to Sensitive             |                                     | 1               |       | 3             |                  |
|   | 4-Mile Radius Distance to Sensitive Environment | 0 1 2 3                             |                 |       |               |                  |
|   | 4-Mile Radius Distance to Sensitive Environment | 0 1 2 3                             |                 |       |               |                  |
|   | 4-Mile Radius Distance to Sensitive Environment | 0 1 2 3                             |                 |       |               |                  |

FIGURE 9 AIR ROUTE WORK SHEET

|                                                     | S    | s <sup>2</sup> |
|-----------------------------------------------------|------|----------------|
| Groundwater Route Score (Sgw)                       |      |                |
| Surface Water Route Score (S <sub>SW</sub> )        | 9.74 | 94.94 .        |
| Air Route Score (Sa)                                | -0   | -              |
| $s_{gw}^2 + s_{sw}^2 + s_a^2$                       |      | 94.94          |
| $\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$ .              |      | 9.74           |
| $\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$ |      | 5.63           |

FIGURE 10
WORKSHEET FOR COMPUTING S<sub>M</sub>

NA

|                                                                                                        | Fire         | and     |      | plos      | sior  | ı W  | ork             | She   | et            |                   |   |                       |     |
|--------------------------------------------------------------------------------------------------------|--------------|---------|------|-----------|-------|------|-----------------|-------|---------------|-------------------|---|-----------------------|-----|
| Rating Factor                                                                                          |              |         |      |           |       |      | Multi-<br>plier | Score | Max.<br>Score | Ref.<br>(Section) |   |                       |     |
| Containment                                                                                            | 1            |         |      |           | -     | 3    |                 |       |               | 1                 |   | 3                     | 7.1 |
| Waste Characteristics Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Quantity | 0            | 1 1 1 1 | 2    | 3 3 3 3 3 | 4     | 5    | 6               | 7     | 8             | 1 1 1 1 1         |   | 3<br>3<br>3<br>3<br>8 | 7.2 |
| :- ;                                                                                                   | Total Was    | ite (   | Cha  | rac       | teri  | stic | s S             | core  |               |                   |   | 20                    |     |
| Targets Distance to Nearest                                                                            | 0            | 1       | 2    | 3         | 4     | 5    |                 |       |               | 1                 | , | 5                     | 7.3 |
| Population Distance to Nearest                                                                         | 0            | 1       | 2    | 3         |       |      |                 |       |               | 1                 |   | 3                     |     |
| Building Distance to Sensitive Environment                                                             | 0            | 1       | 2    | 3         |       |      |                 |       |               | 1                 |   | 3                     |     |
| Land Use                                                                                               | 0            | 1       | 2    | 3         | 4     | c    |                 |       |               | 1                 |   | 3                     |     |
| Population Within<br>2-Mile Radius                                                                     |              |         |      |           |       | 5    |                 |       |               |                   |   | 5                     |     |
| Buildings Within<br>2-Mile Radius                                                                      |              | 1       | 2    | 3         | 4     | 5    |                 |       |               | 1                 |   | 5                     |     |
|                                                                                                        | To           | al 1    | Targ | jets      | Sc Sc | ore  |                 |       |               |                   |   | 24                    |     |
| 4 Multiply * x 2 x 3                                                                                   |              |         |      |           |       | ,    | 1,440           |       |               |                   |   |                       |     |
| 5 Divide line 4 by 1,440                                                                               | and multiply | by      | 10   | 0         |       |      |                 |       | 5             | FE =              |   |                       |     |

FIGURE 11
FIRE AND EXPLOSION WORK SHEET

|                                                        | Direct Cor         | ntact Work Shee | et    |               |                   |     |
|--------------------------------------------------------|--------------------|-----------------|-------|---------------|-------------------|-----|
| Rating Factor                                          | Assigne<br>(Circle | Multi-<br>plier | Score | Max.<br>Score | Ref.<br>(Section) |     |
| 1 Observed Incident                                    | 0                  | 45              | 1     | 0             | 45                | 8.1 |
| If line 1 is 45, proceed to                            |                    |                 |       |               |                   |     |
| 2 Accessibility                                        | 0 1 🙆              | 3               | 1     | 2             | 3                 | 8.2 |
| 3 Containment Acip                                     | 0 (15              | )               | 1     | 15            | 15                | 8.3 |
| 4 Waste Characteristics Toxicity                       | 0 1 2              | 3               | 5     | 15            | 15                | 8.4 |
| Targets Population Within a 1-Mile Radius              | 0 1 2              | 3 4 (5)         | 4     | 20            | 20                | 8.5 |
| Distance to a<br>Critical Habitat                      | <b>1</b> 2         | 3               | 4     | 0             | 12                |     |
|                                                        |                    |                 |       |               |                   |     |
|                                                        | Total Targ         | gets Score      |       | 20            | 32                |     |
| 6 If line 1 is 45, multiply If line 1 is 0, multiply 2 |                    | x 5             |       | 9000          | 21,600            |     |
| 7 Divide line 6 by 21,600 a                            | nd multiply by 1   | 00              | SDC = | 41.           | 67                |     |

FIGURE 12 DIRECT CONTACT WORK SHEET